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General studies of the Influence of a magnetic field on the convective lnsta- 
blllty of a conducting fluid shows [l] that all perturbations in the fluid 
equilibrium develop monotonously; it occurs In weak fields in any case. 
Oscillatory perturbations , however, were not revealed at all. Nevertheless, 
as 1s obvious from a series of simple examples [2 to 43 the oscillatory 
Instability Is possible. 

The purpose of the present paper Is to clarify In a general form the con- 
ditions on the arising of oscillatory lnstablllty. Such an Investigation 1s 
necessary, since In all three cited above papers (determination of the begln- 
nlng of convection In plane horizontal [2] and vertical [3] layers and In a 
cubic cavity [4]) the oscillatory solutions were obtained only for special 
boundary conditions on the boundaries of the fluid. 

The method adopted here was first used,by Landau and Llfshlts [5] In study- 
ing the Intersection of electron terms of molecules. 

1. In the gravity field 

g = - eg9 b' = 1 (1.1) 

and the external magnetic field 

H = yH, y2 = 1 (4.2) 
a conducting fluid which occupies a cavity of an arbitrary shape is heated 
from below in a manner that a constant temperature gradient Is malntalnecl 

while the fluid Is In equlllbrlum. 

VT, = - PA (1.3) 
Assuming small perturbations In the fluid equilibrium u , In the temper- 

ature 2' and In the Internal magnetic field h , are proportional to Chi, 

we obtain from the usual equations of magnetohydrodynamics the following 

equations for perturbations: 

833 



834 ax. ahllais 

- hu = Vu + A (yv) h + I'FT - Of, div u = 0, div h = 0 
(1.4) 

- Ah = avzh + A (yv) u, - AT = bv2T + Qu 

All the quantities here are dimensionless. As unit quantities, we have 
chosen: length 1 (characteristic dimension of the cavity), time l2 /v, 

velocity V / 1, temperature v1-l (A / @)‘I*, magnetic field Vl-’ ([fXp)‘/y. In 

(1.4) appear the following dimensionless parameters: 

A= 
ffl r = G (agA)‘l:, 

C2 

Y (4np)“’ ’ a=zG’ b=+ 

The number A determines the ratio of the magnetic energy density $/8n 

to the kinetic energy density of the fluid PUS/ 2 -pV2/ 212. It does not 

contain the electric conductivity e . The quantity A /v/a Is the Hartmann 

number, and p 1s the Grasshof number. 

At the boundary of the cavity, cut out of an infinite hard conducting 

solid, the velocity of the fluid vanishes, while the magnetic field, the 

temperature, the normal component of the heat flux and the tangential com- 

ponent of the electric field ars all continuous. The boundary conditions are 

thus given as 

u = 0, T = T”, h = h” at the boundary of the cavity 

11 (xvT) = n (x’vT’), n j< rot h n x rot h” 
6 = --y 5 (1.5) 

T” = 0, ho= 0 at infinity 

Here and in what follows, the small superscript circle denotes the values 

of quantities In the solid (X Is the thermal conductivity). These conditions 

will aliow the use of Gauss’s theorem to the entire space for Integration; 

the Integrals on the surface of the cavity always vanish. 

In this paper, we investigate the dependence of the spectrum of the decre- 

ments A pn the external field A and the temperature gradient r . The 

perturbations are monotonous if Im i, - 0 and they damp If ReX> 0 . 

2. Equations (1.4) may be written compactly If we Introduce the 7-vector 

1 and the operators 

qJ= ii , 
[ 1 T 

vf =[“‘I, sl= [:;I], s2q3 
001 100 

s3= [ 000 1 , Jq= 010 

100 [ I (2.1) 

000 

System,. (1.4) may be written 
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The operator L Is not self-conjugate, so that Its elgenvalues may be 

complex, and Its elgenfunctlons may not be mutually orthogonal. They are 

orthogonal to the elgenfunctlons cp of the operator L*, the Hermltlan con- 

jugate of L , For cp we have Equation 

?L*cp = L+cp E oq - slvyI + f&(y~)cp - rps3'p, .S,VCJ = 0 (2.3) 
I.e. 

Lf (A, r) = L (-A, I?) (2.4) 

Such "weak" non-Hermitian property permits to express t and cp by the 

very same functions (cf 2.1): 

'p*= -1: 

[ 1 G-9 
T 

The vectors {qa} are orthogonal to the vectors {%c) In the following sense: 

((PCL-4%) - ( 1 uauP + T,T, - hahp} dV = 0 (A, # ?y3) 

(cpa*qLT) f s {u,z2 + Ta2 - ha2} dV = const 
(2.6) 

When A + 0, the operator L analytically approaches a Hermltlan oper- 

ator, i.e. L+ (0, r) = L (0, r) (2.7) 
so that in the absence of an external magnetic field, oscillatory perturba- 
tions do not exist. In [l] It was shown that shuch perturbations also do not 

occur in weak magnetic fields, I.e. for small values of h all perturbations 

are monotone. There exist two types of monotonous perturbations C6] 

(a=O,1,2,...) (2.8) 

In the solutions of the first type 

These solutions may naturally be called "magnetic": as A + 0 , the velo- 

city and temperature vanish in them and only the magnetic field remains and 

satlsfj.es the Maxwell equations 

- W,, = av2hla, div h,, = 0 (2.9) 

In the other perturbations, called "hydrodynamic", 

5 (~2: + T,,a) 137 > { h,:dV 

In these solutions, as h - 0 , the magnetic field vanishes, and they 

pass over continuously to the solutions of ordinary convection equations 

without magnetic field 

- hzaU2a = V2% + wk - of* 
- 

i2aT2rr = bv2T20 + F@,, div u,, = 0 
(2.10) 
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The criterion determining the type of the perturbation Is the sign of the 

normalizing integral 

(%a ‘gnp) z s ~bn%U7lP + Tnd”,, - hnchn,~ dig’ = (-)” &Az~ 
(m, n :-= 1,2; a, /3 = 0,1,2...) (2.11) 

Oscillatory perturbations appear for values of A greater than some cri- 

tical h*(r) . It is essential that they appear in pairs. In fact, from 

the real character of the operator L follows that If [h,$) is some com- 

plex solution of Equation (2.2), then (A*,$*] is also a solution of this 

equation. The decrements of oscillatory perturbations $ and I#* at the 

point A, coincide: h = a* f A”, and for A < A, the perturbations them- 

selves become two monotonous perturbations. 

Thus, the necessity to study the confluence In the spectrum of the decre- 

ments X(b,r) arises. This study will be carried out according to the 

method described in [5]. 

3, Assume that at the point (n,,r,) J the two real decrements A,,,, and 

h, have near values. We shall attempt to make A,,, = ?+a, by varying the 

parameters by AA and bT ; we have 

L (A: I-‘) = L (A,, I’,) -1. 2 AA + g AI’ = 4, + I-I (3.1) 

Considering II as a pertutbation on the operator & , we determine the 

eigenfunctlons and eigenvalues of Equation 

N=Gl t l-Q* (3 2) 

by means of the method of the perturbation theory. The eigenfuncticr.; of 

the “unperturbed” operator Lo satisfy the equatiOnS 

La2Cl - -%3qlna, ,,,a -- L&"/3 = Lo$lB (3.3) 

As a first approximation to the elgenfunctions at the point 

(&, + AA, rc + AJJ 

we use a linear combination of the type 

9 = GI,$ln, t c,,p$,,p (3.4) 

Substituting (3.4) into (3.2), we get 

CV,, (I* - A!,!, - I-Q %la + C,Q3 (h - L, - n) $,,a = 0 (3.5) 

In the problem considered two cases may occur. Perturbations $J,,~ and 

+ ,l,?, whose decrements have the close values at the point (A, ,rO ! : may 
belong (a) to one type (n = m) , or (b) to different types (niim). 

To begin, let us examine the first case, that id both $,I~ and $10 are 

either “magnetic” (n = 1) , or “hydrodynamic” (n=2) perturbations. 6y taniilg 

the Inner product of (3.5) with (Pa and (#a in turn (dropping the index p. ), 

we get two algebraic equations, which are solvable if 



(3.6) 

Here 

From (3.7) It 1s seen that 

Kp = &3ar (3.8) 

(The matrix J&p is determined in the mixed basis @ci; *IX), and therefore 

(3.8) does not mean, of course, that n Is Hermitian.) 

By expanding the determinant (3.6), we find 

h = ‘/2 IL + &3 + (-- >,’ (I-L, + l-r,,)1 f (3.9) 

For the confluence of the decrements the expression under the radical must 

be made zero. Since this appears as the sum of two squares, the conditions for 

confluence consist of the two equations 

&z - hp + (--I” (L - Q3) = 0, IT,8 = 0 (3.10) 

With two arbitrary parameters, AA and AT , which determine the pertur- 

bation n , these equations can always be satisfied. Consequently the decre- 

ments of any two perturbations of the same type may intersect. Nothing of lnter- 

est, however, arises from this, since such a confluence has no relation to an 

oscillatory perturbation. The decrements determined by Formula (3.9) sepa- 

rate after the confluence and remain real. 

If $z and ‘$p possess different symmetry, then I: 51 flap E 0, and from 

the two conditions for confluence (3.10) only one remains. Therefore the 

Intersection of the surfaces h, (A, I’) and A, (A, r) occurs along a line for 

perturbations of opposite symmetry and at a point for those of the same sym- 

met-y. 

4, It remains to consider the case when at the point (A,, r,) the close 

values ?,,, and hzb are decrements of two perturbations of different type. 

In the following the second subscript will be omitted. Multiplying (3.5) by 

cp, and ga we get a system of two equations, the condition of solvability of 

which Is 

(4.1) 

Here nip is determined by (3.7), so that IT,1 = II,,. From this by 

expanding the determinant we get (4.2) 
?b = ‘I2 (h, A- h, - l-L, + b2) + v/‘/a (h - A, - n,, - JM2 - l-L,2 
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If I, and ta have dlfferent symmetries, then IT,, E 0, and the expres- 

sion under the radical In (4.2) Is always nonnegative ; that Is, a complex 
X Is Impossible. The confluence of the decrements, which Is possible here, 

was discussed In Section 3. 

The most Interesting case Is that where #1 and sp have the same symmetry. 
Then nI,,+ 0,so that now under the radical Is not a sum, as In (3.9), but a 

difference of two squares. With the proper choices of AA and AP this 

difference can be positive, negative, or equal to zero. Negative values of 

the difference correspond to two complex-conjugate decrements, that is, two 

oscillatory perturbations with frequencies f ImX . With a change of sign 

of the exprtsslon under the radical this pair cf oscillatory perturbations 

goes over into two monotonous perturbations: one “magnetic” and one “hydro- 

dynamic”. The condition for confluence of the decrements consists of mua- 

tlon 
V4 (a, - h, - n,, - n&c - rI1ss = 0 (4.3) 

that Is, the surfaces h, (A, r) and h, (A, r) Intersect along a line. Let us 

determine the rule according which these decrements change In the nelghbor- 

hood of this line. If the point A* = A, $ AA, I?* = rc + Al? lies on the 

ilne of Intersection of the decrements, then In the neighborhood of this point 

A = A, f E = A,, + AA + E, r=r,+tj~rro+fw+7j (4.4) 

Taking into account that h, (A.+, I‘,) = h, (A,, r,) E ho, we get from (4.2) 

for the values of the parameters in (4.4) 

h=3L0 -&-vBE+Dq (B, D = const) (4.5) 

THUS, near(A,, I’,)the frequency of oscillations 1s 

JB(A -A,) tD (I' - I',,- (4.6) 

Thus the reason for the appearance of oscillatory perturbations Is the 
confluence of the decrements of monotonous perturbations of different type, 
but the same synnnetry. For this case the upper portion of F1g.l shows the 
relief sections of the function x(n’,r”) for four different planes PC const. 
To the right of the point of confluence of the nmagnetlcn and “hydrodynamic” 
decrements appear two complex conjugate X . On the Fig.1 their real parts 
are designated. 

5. The boundary value problem (1.4) with A = 0 breaks lip i.lto two prob- 

lems (2.9) and (2.10). Problem (2.10) has been lnvestlgated by Sorokln [7]. 

By the use of a variational technique he showed that Wit;. tne growth of f 

all h,, are decreased. Por r - fa (see the upper part of 61g.l) the decre- 

ment As becomes zero. For r > ra the monotonous perturbation y. would be 

strengthened, leading to lnstablllty. 

The elgen numbers of h,, of the other problem (2.9) do not depend on r 

at all. Therefore 1, (O,ra ) is a common point of all curves corresponding 

to different values of p , 

In the presence of a magnetic field (A # 0) two forms of convective lnsta- 



billty corresponding to monotonous and oscillatory perturbations, are possi- 

ble. In weak fields, as long as A Is less than some A*, equilibrium is 

threatened only by monotonous perturbations, 

and the critical value of r , above which the 
equilibrium Is unstable, Increases with ln- 

creasing A . Oscillatory instability occurs 

for APA'. 

The lower part of Fig.1 is taken from [ 33. 
The solid lines on it designate the limits of 
stability for plane vertical layer of fluid, 

heated from below with a transverse magnetic 

field. Line aa determines the monotonous, 

while bb gives the oscillatory threshold of 

convection. The region of existence of oscll- 

latory perturbations lies under the dotted 

curve. This curve projects on the plane 

ReX = 0 just that line along which the sur- 

faces 1, (,fa,ra) and k,(A",r") intersect. 

The author expresses his sincere gratitude 

to V.S. Sorokin for his guidance, and to 0.2. 

Gershuni for helpful advice. 
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